ILRS SLR MISSION SUPPORT REQUEST FORM (June 2011) ## **SECTION I: MISSION INFORMATION:** | General Information: | |--| | Satellite Name: | | Satellite Host Organization: | | Web Address: | | | | Contact Information: | | Primary Technical Contact Information: | | Name: | | Address: | | | | Phone No.: | | Fax No.: | | E-mail Address: | | | | Alternate Technical Contact Information: | | Name: | | Address: | | | | Phone No.: | | Fax No.: | | E-mail Address: | | | | Primary Science Contact Information: | | Name: | | Address: | | | | Phone No.: | | Fax No.: | | E-mail Address: | | Alternate Science Contact Information: | |--| | Name: | | Address: | | | | Phone No.: | | Fax No.: | | E-mail Address: | | | | Mission Specifics: | | Scientific or Engineering Objectives of Mission: | | | | | | | | | | | | Satellite Laser Ranging (SLR) Role of Mission: | | | | | | | | | | | | Anticipated Launch Date: | | Expected Mission Duration: | | Orbital Accuracy Required: | | A 42 1 4 10 14 1B 4 | | Anticipated Orbital Parameters: | | Altitude: | | Inclination: | | Eccentricity: | | Orbital Period: | | Frequency of Orbital Maneuvers: | | Mission Timeline: | | Tracking Requirements: | |---| | Tracking Schedule: | | Spatial Coverage: | | Temporal Coverage: | | | | Operations Requirements: | | Prediction Center: | | Prediction Technical Contact Information: | | Name: | | Address: | | | | Phone No.: | | Fax No.: | | E-mail Address: | | | | Priority of SLR for POD: | | Other Sources of POD (GPS, Doppler, etc.): | | | | Normal Point Time Span (sec): | | Tracking Network Required (Full/NASA/EUROLAS/WPLTN/Mission Specific): | | | #### SECTION II: TRACKING RESTRICTIONS: Several types of tracking restrictions have been required during some satellite missions. See http://ilrs.gsfc.nasa.gov/satellite missions/restricted.html for a complete discussion. - 1) Elevation restrictions: Certain satellites have a risk of possible damage when ranged near the zenith. Therefore a mission may want to set an elevation (in degrees) above which a station may not range to the satellite. - 2) Go/No-go restrictions: There are situations when on-board detectors on certain satellites are vulnerable to damaged by intense laser irradiation. These situations could include safe hold position or maneuvers. A small ASCII file is kept on a computer controlled by the satellite's mission which includes various information and the literal "go" or "nogo" to indicate whether it is safe to range to the spacecraft. Stations access this file by ftp every 5-15 minutes (as specified by the mission) and do not range when the flag file is set to "nogo" or when the internet connection prevents reading the file. - 3) Segment restrictions: Certain satellites can allow ranging only during certain parts of the pass as seen from the ground. These missions provide station-dependent files with lists of start and stop times for ranging during each pass. - 4) Power limits: There are certain missions for which the laser transmit power must always be restricted to prevent detector damage. This requires setting laser power and beam divergence at the ranging station before and after each pass. While the above restrictions are controlled by software, this restriction is often controlled manually. Many ILRS stations support some or all of these tracking restrictions. See xxx for the current list. You may wish to work through the ILRS with the stations to test their compliance with your restrictions or to encourage additional stations that are critical to your mission to implement them. The following information gives the ILRS a better idea of the mission's restrictions. Be aware that once predictions are provided to the stations, there is no guarantee that forgotten restrictions can be immediately enforced. | Can detector(s) or other equipment on the spacecraft be date particularly in any one of these wavelengths (532nm, 1064r | č , | |---|-------------| | Are there times when the LRAs will not be accessible from | the ground? | | (If so, go/nogo or segmentation files might be used to avoid Is there a need for an altitude tracking restriction? | , | | Is there a need for a go/no-go tracking restriction? | _ | | For what reason(s)? | | | | | | Is there a need for a pass segmentation restriction? | | | For what reason(s)? | |---| | | | Is there a need for a laser power restriction? | | Under what circumstances? | | | | What power level (mW/cm ²)? | | Is manual control of transmit power acceptable? | | For ILRS stations to range to satellites with restrictions, the mission sponsor must agree to the following statement: "The mission sponsor agrees not to make any claims against the station or station contractors or subcontractors, or their respective employees for any damage arising from these ranging activities, whether such damage is caused by negligence or otherwise, except in the case of willful misconduct." | | Please initial here to express agreement: | | Other comments on tracking restrictions: | | | | | | | | | ### SECTION III: RETROREFLECTOR ARRAY INFORMATION: A prerequisite for accurate reduction of laser range observations is a complete set of pre-launch parameters that define the characteristics and location of the LRA on the satellite. The set of parameters should include a general description of the array, including references to any ground-tests that may have been carried out, array manufacturer and whether the array type has been used in previous satellite missions. So the following information is requested: | Retroreflector Primary Contact Information: | |--| | Name: | | Address: | | Phone No.: | | Fax No.: | | E-mail Address: | | Array type (spherical, hexagonal, planar, etc.), to include a diagram or photograph: | | Array manufacturer: | | Link (URL or reference) to any ground-tests that were carried out on the array: | | The LRA design and/or type of cubes was previously used on the following missions: | | For accurate orbital analysis it is essential that full information is available in order that a model of the 3-dimensional position of the satellite center of mass may be referred to the location in space at which the laser range measurements are made. To achieve this, the 3-D location of the LRA phase center must be specified in a satellite fixed reference frame with respect to the satellite's mass center. In practice this means that the following parameters must be available at mm accuracy or better: | | The 3-D location (possibly time-dependent) of the satellite's mass center relative to a satellite-based origin: | | | | The 3-D location of the phase center of the LRA relative to a satellite-based origin: | | |--|-----| | | | | However, in order to achieve the above if it is not directly specified (the ideal case) by the smanufacturer, and as an independent check, the following information must be supplied prior to | | | The position and orientation of the LRA reference point (LRA mass-center or marker or assembly) relative to a satellite-based origin: | LRA | | The position (XYZ) of either the vertex or the center of the front face of each corner cube wit LRA assembly, with respect to the LRA reference point and including information of amorecession of front faces of cubes: | | | The orientation of each cube within the LRA assembly (three angles for each cube): | | | The shape and size of each corner cube, especially the height: | | | The material from which the cubes are manufactured (e.g. quartz): | | | The refractive index of the cube material, as a function of wavelength λ (micron): | | | Dihedral angle offset(s) and manufacturing tolerance: | | | Radius of curvature of front surfaces of cubes, if applicable: | | | Flatness of cubes' surfaces (as a fraction of wavelength): | | | Whether or not the cubes are coated and with what material: | | | | | | Other Comments: | | | | |-----------------|--|--|--| An example of the metric information for the array position that should be supplied is given schematically below for the LRA on the GIOVE-A satellite. Given the positions and characteristics of the cubes within the LRA tray, it is possible to compute the location of the array phase center. Then given the C and L vectors it is straightforward to calculate the vector from the satellite's center of mass (CoM) in a spacecraft-fixed frame to the LRA phase center. Further analysis to derive the array far-field diffraction patterns will be possible using the information given above. A good example of a well-specified LRA is that prepared by GFZ for the CHAMP mission in the *paper* "The Retro-Reflector for the CHAMP Satellite: Final Design and Realization", which is available on the ILRS Web site at http://ilrs.gsfc.nasa.gov/docs/rra_champ.pdf. The final and possibly most complex piece of information is a description (for an active satellite) of the satellite's attitude regime as a function of time, which must be supplied in some form by the operating agency. This algorithm will relate the spacecraft reference frame to, for example, an inertial frame such as J2000. #### RETROREFLECTOR ARRAY REFERENCES Two reports, both by David Arnold, are of particular interest in the design and analysis of laser retroreflector arrays. - Method of Calculating Retroreflector-array Transfer Functions, David A. Arnold, Smithsonian Astrophysical Observatory Special Report 382, 1979. - Retroreflector Array Transfer Functions, David A. Arnold, ILRS Signal Processing Working Group, 2002. Paper available at http://ilrs.gsfc.nasa.gov/docs/retro_transfer_functions.pdf. ## SECTION IV: MISSION CONCURRENCE | As an authorized representative of the | | | | | |--|--|-----------------------------|--|--| | hereby request | and authorize the ILRS to track the satellite | described in this document. | | | | Name (print): _ | | Date | | | | Signature: | | | | | | Position: | | | | | | Send form to: | ILRS Central Bureau
c/o Carey Noll | | | | | | NASA GSFC Code 690 Greenbelt, MD 20771 USA 301-614-6542 (Voice) 301-614-6015 (Fax) Carey.Noll@nasa.gov | | | |